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1 Object of anholonomicity -Ricci torsion. Connection

of absolute parallelism

Consider a four-dimensional di�erentiable manifold with coordinates xi (i = 0, 1, 2, 3)
such that at each point of the manifold we have a vector ea

i (i = 0, 1, 2, 3) and a covector
ej

b (b = 0, 1, 2, 3) with the normalization conditions

ea
ie

j
a = δj

i , ea
ie

i
b = δa

b . (1)

For arbitrary coordinate transformations

dxi′ =
∂xi′

∂xk
dxk (2)

in coordinate index i the tetrad ea
i transforms as a vector

ea
i′ =

∂xi

∂xi′
ea

i. (3)

In the process, in the tetrad index a relative to the transformations (2) it behaves as
a scalar.

Tetrad ea
i de�nes the metric tensor of a space of absolute parallelism

gik = ηabe
a
ie

b
k, ηab = ηab = diag(1 − 1 − 1 − 1) (4)

and the Riemannian metric
ds2 = gikdx

idxk. (5)

Using the tensor (4) and the normal rule, we can construct the Christo�el symbols

Γi
jk =

1

2
gim(gjm,k + gkm,j − gjk,m). (6)

that transform following a nontensor law of transformation [1]

Γk′

j′i′ =
∂2xk

∂xi′∂xj′

∂xk′

∂xk
+
∂xi

∂xi′

∂xj

∂xj′

∂xk′

∂xk
Γk

ji (7)

with respect to the coordinate transformations (2). In the relationship (6) and farther on
we will denote the partial derivative with respect to the coordinates xi as

, k =
∂

∂xk

. (8)
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Di�erentiating the arbitrary vector ea
i gives

ea
i,j′ =

∂xj

∂xj′ e
a
i,j. (9)

Applying the di�erentiation operation (9) to the relationship (3) gives

ea
i′,j′ =

∂xi

∂xi′

∂xj

∂xj′ e
a
i,j +

∂2xi

∂xi′∂xj′ e
a
i. (10)

Alternating the indices i′ and j′ and subtracting from (10) the resultant expression,
we have

ea
i′,j′ − ea

j′,i′ = (ea
i,j − ea

j,i)
∂xi

∂xi′

∂xj

∂xj′ .

Considering (3), we can rewrite this relationship in the form

ek′

a(e
a
i′,j′ − ea

j′,i′) = ek
a(e

a
i,j − ea

j,i)
∂xi

∂xi′

∂xj

∂xj′

∂xk′

∂xk
.

By de�nition, the di�erential
dsa = ea

idx
i (11)

is said to be complete, if the following relationship holds:

ea
i,j − ea

j,i = 0. (12)

Otherwise, for ea
i,j − ea

j,i 6= 0, the di�erential (11) is not integrable (equality (12) is
the condition of integration for the relationship (11)).

We will introduce the following geometric object [2]

Ω..i
jk = ei

ae
a
[k,j] =

1

2
ei

a(e
a
k,j − ea

j,k) (13)

with a tensor law of transformation relative to the coordinate transformations (2)

Ω..i′

j′k′ = Ω..i
jk

∂xj

∂xj′

∂xk

∂xk′

∂xi′

∂xi
. (14)

Clearly, if the condition (12) is met, this object vanishes. In that case, tetrad ea
i is

holonomic and the metric (5) characterizes holonomic di�erential geometry. If the object
(13) is nonzero, we deal with anholonomic di�erential geometry, and the object (13) itself
is called an object of anholonomicity.

We will rewrite the relationship (10) in the following manner:

ea
i′,j′ =

∂2xi

∂xi′∂xj′ e
a
i +

∂xi

∂xi′

∂xj

∂xj′ e
a
i,j =

=

(
∂2xk

∂xi′∂xj′ +
∂xi

∂xi′

∂xj

∂xj′ ∆
k
ij

)
ea

k, (15)

where we have introduced the notation

∆k
ij = ek

ae
a
i,j (16)
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and used the orthogonality condition (1).
It is seen from the relationships (15 ) that the object ∆k

ij gets transformed relative to
the transformations (2) as the connection

∆k′

i′j′ =
∂2xk

∂xi′∂xj′

∂xk′

∂xk
+
∂xi

∂xi′

∂xj

∂xj′

∂xk′

∂xk
∆k

ij. (17)

The connection of a space given by (16) is called the connection of absolute parallelism
[3].

Interchanging in (17) the indices i and j gives

∆k′

j′i′ =
∂2xk

∂xj′∂xi′

∂xk′

∂xk
+
∂xi

∂xj′

∂xj

∂xi′

∂xk′

∂xk
∆k

ji. (18)

Subtracting (18) from (17) gives

∆k′

[i′j′] =
∂xi

∂xj′

∂xj

∂xi′

∂xk′

∂xk
∆k

[ij]. (19)

It follows from the relationships (16) and (13) that the connection of absolute paral-
lelism features the Ricci torsion

∆k
[ij] = −Ω..k

ij , (20)

de�ned by the object of anholonomity.

2 Covariant di�erentiation in A4 geometry. Ricci rota-

tion coe�cients

The de�nition of the covariant derivative with respect to the connection of the geometry
of absolute parallelism (A4 geometry) ∆i

jk from a tensor of arbitrary valence U i...p
m...n has

the form
∗
∇k U

i...p
m...n = U i...p

m...n,k + ∆i
jkU

j...p
m...n + . . .+ ∆p

jkU
i...j
m...n−

∆j
mkU

i...p
j...n − . . .−∆j

nkU
i...p
m...j.

(21)

This de�nition enables some quite useful relationships in A4 geometry to be proved.

Proposition 5.1. Parallel displacement of the tetrad ea
i relative to the connection

∆i
jk equals zero identically.

Proof. From the de�nition (21) we have the following equalities:

∗
∇k e

i
a = ai

a,k + ∆i
jke

j
a, (22)

∗
∇k e

a
j = ea

j,k −∆i
jke

a
i. (23)

Since the connection ∆i
jk is de�ned as

∆i
jk = ei

ae
a
j,k, (24)

we have
ei

ae
a
j,k −∆i

jk = 0.
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Multiplying this equality by ea
i and taking into consideration the orthogonality con-

ditions (5.1), we get
∗
∇k e

a
j = ea

j,k −∆i
jke

a
i = 0. (25)

To prove that the relationship (22) is zero, we will take a derivative of the convolution
ea

je
i
a = δi

j

(δi
j),k = (ea

je
i
a),k = ei

ae
a
j,k + ea

je
i
a,k = 0.

Hence, by (24), we have
∆i

jk = −ea
je

i
a,k (26)

or
ea

je
i
a,k + ∆i

jk = 0.

Multiplying this relationship by ej
a and using the conditions ea

je
i
a = δi

j, we have

∗
∇k e

i
a = ei

a,k + ∆i
jke

j
a = 0. (27)

Proposition 5.2. Connection ∆i
jk can be represented as the sum

∆i
jk = Γi

jk + T i
jk, (28)

where Γi
jk are the Christo�el symbols given by the relationship (6), and

T i
jk = −Ω..i

jk + gim(gjsΩ
..s
mk + gksΩ

..s
mj) (29)

are the Ricci rotation coe�cients [2].
Proof. Let us represent the connection (28) as the sum of parts symmetrical and skew-
symmetrical in indices j, k

∆i
jk = ∆i

(jk) + ∆i
[jk], (30)

where

∆i
(jk) =

1

2
(∆i

jk + ∆i
kj), ∆i

[jk] =
1

2
(∆i

jk −∆i
jk).

We now add to and subtract from the right-hand side of (30) the same expression

∆i
jk = ∆i

(jk) + ∆i
[jk] + gim(gjs∆

s
[km] + gks∆

s
[jm])−

gim(gjs∆
s
[km] + gks∆

s
[jm]).

(31)

We then group the terms on the right-hand side of (31) as follows:

∆i
jk = ∆i

(jk) − gim(gjs∆
s
[km] + gks∆

s
[jm]) +

+ ∆i
[jk] + gim(gjs∆

s
[km] + gks∆

s
[jm]). (32)

Since
∆i

[jk] = −Ω..i
jk,

it follows from (32) and (29) that

∆i
jk = ∆i

(jk) − gim(gjs∆
s
[km] + gks∆

s
[jm]) + T i

jk. (33)
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We now show that

Γi
jk = ∆i

(jk) − gim(gjs∆
s
[km] + gks∆

s
[jm]). (34)

Actually, we have the relationships

∆i
(jk) = ei

ae
a
(j,k) =

1

2
ei

a(e
a
j,k + ea

k,j),

∆i
[jk] = ei

ae
a
[j,k] =

1

2
ei

a(e
a
j,k − ea

k,j),

gjs = ηabe
a
je

b
s, (35)

therefore (34) become

Γi
jk = ei

ae
a
(j,k) + gim(ηabe

a
je

b
[m,k] + ηabe

a
ke

b
[m,j]) =

=
1

2
ηcdηabe

i
ce

m
d (eb

me
a
j,k + eb

me
c
k,j) +

+
1

2
gim

(
ηab(e

a
je

b
m,k − ea

je
b
k,m) + ηab(e

a
ke

b
m,j − ea

ke
b
j,m)

)
.

Regrouping the terms here gives

Γi
jk =

1

2
gim

(
(ηabe

a
je

b
m),k + (ηabe

a
ke

b
m),j − (ηabe

a
je

b
k),m

)
.

Hence, by (35), we obtain

Γi
jk =

1

2
gim(gjm,k + gkm,j − gjk,m), (36)

or

1

2
gim(gjm,k + gkm,j − gjk,m) =

= ∆i
(jk) − gim(gjs∆

s
[km] + gks∆

s
[jm]) = Γi

jk. (37)

Substituting (37) into (33), we get the relationship (28).

Proposition 5.3. The Ricci rotation coe�cients T i
jk can be represented in the

form
T i

jk = ei
a∇ke

a
j, (38)

T i
jk = −ea

j∇ke
i
a, (39)

where ∇k stands for a covariant derivative with respect to the Christo�el Γi
jk symbols.

Proof. We will represent in the relationships (25) and (27) the connection ∆i
jk as the

sum (28)
∗
∇k e

a
j = ea

j,k − Γi
jke

a
i − T i

jke
a
i = 0, (40)

∗
∇k e

i
a = ei

a,k + Γi
jke

j
a + T i

jke
j
a = 0 (41)
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Since, by de�nition [1], we can write

∇ke
a
j = ea

j,k − Γi
jke

a
i,

∇ke
i
a = ei

a,k + Γi
jke

j
a,

then (40) and (41) can be written as

∇ke
a
j − T i

jke
a
i = 0, (42)

∇ke
i
a + T i

jke
j
a = 0. (43)

Multiplying (42) by ei
a and (43) by ea

j, respectively, we will obtain (using the ortho-
gonality conditions (1)), by (42), (43), the relationships (38) and (39).

We will now calculate the covariant derivative
∗
∇k with respect to the metric tensor

gjm, knowing that gjm = ηabej
ae

m
b

∗
∇k g

jm =
∗
∇k η

abej
ae

m
b =

∗
∇k e

j
ae

ma =

= ema
∗
∇k e

j
a + ej

a

∗
∇k e

ma.

From the relationships (25) and (27), we have

∗
∇ gjm = 0. (44)

On the other hand, applying the formula (21) to the relationship (44), we �nd that

∗
∇k g

jm = gjm
,k + ∆j

pkg
pm + ∆m

pkg
jp = 0. (45)

Substituting the connection ∆i
jk as the sum (28), we will write the relationship (45)

in the form ∗
∇k g

jm = ∇kg
jm + T j

pkg
pm + Tm

pkg
jp = 0. (46)

From the equality
∇kg

jm = gjm
,k + Γj

pkg
pm + Γm

pkg
jp = 0, (47)

we have, by (46),
T j

pkg
pm + Tm

pkg
jp = T jm

k + Tmj
k = 0.

This equality establishes the following symmetry properties for the Ricci rotation coe�-
cients:

Tjmk = −Tmjk. (48)

Therefore, in the A4 geometry the Ricci rotation coe�cients have 24 independent compo-
nents.
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3 Curvature tensor of A4 space

The curvature tensor of the space of absolute parallelism Si
jkm is de�ned in terms of

the connection ∆i
jk following a conventional rule [18]

Si
jkm = 2∆i

j[m,k] + 2∆i
s[k∆

s
|j|m] = 0, (49)

where the parentheses [ ] signify alternation in appropriate indices, whereas the index
within the vertical lines | | is not subject to alternation.

Proposition 5.4. The Riemann-Christo�el tensor of a space with the connection
(26) equals zero identically.
Proof. From the relationship (26) we have

ea
j,k = ∆i

jke
a
i. (50)

Di�erentiating the relationship (50) with respect to m gives

ea
j,k,m = (∆i

jke
a
i),m = ∆i

jk,me
a
i + ea

i,m∆i
jk =

= (∆i
jk,m + ei

ae
a
s,m∆s

jk)e
a
i = (∆i

jk,m + ∆i
sm∆s

jk)e
a
i.

Alternating this relationship in indices k and m we get

−2ea
j,[k,m] = 2(∆i

j[m,k] + 2∆i
s[k∆

s
|j|m]) = Si

jkme
a
i. (51)

Since the operation of di�erentiating with respect to indices k and m is symmetrical,
we have

ea
j,[k,m] = 0,

From this equality, considering that ea
i in (51) is arbitrary, we will get

Si
jkm = 0. (52)

Proposition 5.5. Tensor Si
jkm can be represented as the sum

Si
jkm = Ri

jkm + 2∇[kT
i
|j|m] + 2T i

c[kT
c
|j|m] = 0, (53)

where
Ri

jkm = 2Γi
j[m,k] + 2Γi

s[kΓ
s
|j|m] (54)

is the tensor of the Riemannian space A4.
Proof. Substituting the sum ∆i

jk = Γi
jk + T i

jk into (49) gives

Si
jkm = 2Γi

j[m,k] + 2Γi
s[kΓ

s
|j|m] + 2T i

j[m,k] + 2T i
s[kT

s
|j|m] +

2T i
s[kΓ

s
|j|m] + 2Γi

s[kT
s
|j|m] = 0. (55)

Using (54), we will write (55) as follows:

Si
jkm = Ri

jkm + 2T i
j[m,k] + 2T i

s[kT
s
|j|m] +

+2Γs
j[kT

i
|s|m] + 2Γi

s[kT
s
|j|m] = 0. (56)
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If now we add to the right-hand side of this relationship the expression

−2Γs
[km]T

i
sj = 0,

and take into consideration that [1]

∇kU
i...p
m...n = U i...p

m...n,k + Γi
jkU

j...p
m...n + . . .+ Γp

jkU
i...j
m...n −

Γj
mkU

i...p
j...n − . . .− Γj

nkU
i...p
m...j, (57)

we will obtain from (56) the equality (53).
Let us now rewrite the relationship (53) as

Ri
jkm = −2T i

j[m,k] − 2T i
s[kT

s
|j|m]. (58)

Substituting here (38) and (39)

T i
jk = ei

a∇ke
a
j, T i

jk = −ea
j∇ke

i
a,

we obtain
−2T i

j[m,k] = −2ei
a∇[k∇m]e

a
j − 2∇[ke

i
|a|∇m]e

a
j,

−2T i
s[kT

s
|j|m] = 2ea

s∇[ke
i
|ae

s
a|∇m]e

a
j = 2∇[ke

i
|a|∇m]e

a
j.

Therefore, it follows from the relationships (58) that

Ri
jkm = −2ei

a∇[k∇m]e
a
j = 2ei

a∇[m∇k]e
a
j. (59)

Proposition 5.6. The torsion �eld Ω..i
jk of the A4 space satis�es the equations

∗
∇[k Ω..i

jm] + 2Ω..s
[kjΩ

..i
m]s = 0. (60)

Proof. Alternating the expression (49) in indices j, k,m and using the relationship ∆i
[jk] =

−Ω..i
jk, we get

Si
[jkm] = 2Ω..i

[jm,k] + 2∆i
s[kΩ

..s
jm] = 0. (61)

If then we add and subtract here the quantity

2∆s
[kjΩ

..i
|s|m] + 2∆s

[kmΩ..i
j]s,

we will have

2Ω..i
[jm,k] + 2∆i

s[kΩ
..s
jm] − 2∆s

[kjΩ
..i
|s|m] − 2∆s

[kmΩ..i
j]s +

2∆s
[kjΩ

..i
|s|m] + 2∆s

[kmΩ..i
j]s = 0.

Using the formula (21), we can rewrite this relationship as follows:

2
∗
∇[k Ω..i

jm] − 2Ω..s
[kjΩ

..i
|s|m] − 2Ω..s

[kmΩ..i
j]s =

= 2
∗
∇[k Ω..i

jm] + 4Ω..s
[kjΩ

..i
m]s = 0,

(62)

whence we have (60).
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Proposition 5.7. The Riemann tensor Ri
jkm of the A4 space satis�es the equality

Ri
[jkm] = 0. (63)

Proof. Alternating the relationship (54) in indices j, k,m and using the equality

T i
[jk] = −Ω..i

jk,

we have
Ri

[jkm] = 2∇[kΩ
..i
jm] + 2T i

s[kΩ
..s
jm].

If in the right-hand side of the equality we add and subtract the quantity

2T s
[kjΩ

..i
|s|m] + 2T s

[kmΩ..i
j]s,

we obtain

Ri
[jkm] = 2∇[kΩ

..i
jm] + 2T i

s[kΩ
..s
jm] − 2T s

[kjΩ
..i
|s|m] − 2T s

[kmΩ..i
j]s +

+2T s
[kjΩ

..i
|s|m] + 2T s

[kmΩ..i
j]s = 2

∗
∇[k Ω..i

jm] − 2Ω..s
[kjΩ

..i
|s|m] −

−2Ω..s
[kmΩ..i

j]s = 2
∗
∇[k Ω..i

jm] + 4Ω..s
[kjΩ

..i
m]s = 0,

which proves the validity of the relationship (63).

4 Formalism of external forms and the matrix

treatment of Cartan's structural equations of the

absolute parallelism geometry

Consider the di�erentials
dxi = eaei

a, (64)

dei
b = ∆a

be
i
a, (65)

where
ea = ea

i dx
i, (66)

∆a
b = ea

ide
i
b = ∆a

bkdx
k (67)

are di�erential 1-forms of tetrad ea
i and connection of absolute parallelism ∆a

bk. Di�er-
entiating the relationships (64), (65) externally [3], we have, respectively,

d(dxi) = (dea − ec ∧∆a
c)e

i
a = −Saei

a, (68)

d(dei
a) = (d∆b

a −∆c
a ∧∆b

c)e
i
b = −Sb

ae
i
b. (69)

Here Sa denotes the 2-form of the Cartan torsion [3], and Sb
a � the 2-form of the

curvature tensor. The sign ∧ signi�es external product, e.g,

ea ∧ eb = eaeb − ebea. (70)
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By de�nition, a space has a geometry of absolute parallelism, if the 2-form of Cartanian
torsion Sa and the 2-form of the Riemann-Christo�el curvature Sb

a of this space vanishe

Sa = 0, (71)

Sb
a = 0. (72)

At the same time, these equalities are the integration conditions for the di�erentials
(64) and (65).

Equations
dea − ec ∧∆a

c = −Sa, (73)

d∆b
a −∆c

a ∧∆b
c = −Sb

a, (74)

which follow from (68) and (69), are Cartan's structural equations for an appropriate
geometry. For the geometry of absolute parallelism hold the conditions (71) and (72),
therefore Cartan's structural equations for A4 geometry have the form

dea − ec ∧∆a
c = 0, (75)

d∆b
a −∆c

a ∧∆b
c = 0. (76)

Considering (28), we will represent 1-form ∆a
b as the sum

∆a
b = Γa

b + T a
b. (77)

Substituting this relationship into (75) and noting that

ec ∧∆a
c = ec ∧ T a

c,

we get the �rst of Cartan's structural equations for A4 space.

dea − ec ∧ T a
c = 0. (A)

Substituting (77) into (76) gives the second of Cartan's equations for A4 space.

Ra
b + dT a

b − T c
b ∧ T a

c = 0, (B)

where Ra
b is the 2-form of the Riemann tensor

Ra
b = dΓa

b − Γc
b ∧ Γa

c. (78)

By de�nition [3], we always have the relationships

dd(dxi) = 0, (79)

dd(dei
a) = 0. (80)

In the geometry of absolute parallelism these equalities become

d(dea − ec ∧ T a
c) = Ra

cfde
c ∧ ef ∧ ed = 0, (81)

d(Ra
b + dT a

b − T c
b ∧ T a

c) = dRa
b +Rf

b ∧ T a
f − T f

b ∧Ra
f = 0. (82)
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Here
Ra

cfd = −2T a
c[d,f ] − 2T a

b[fT
b
|c|d].

Equalities (81) and (82) represent the �rst and second of Bianchi's identities, respec-
tively, for A4 space. Dropping the indices, we can write Cartan's structural equations and
Bianchi's identities for the A4 geometry as

de− e ∧ T = 0, (A)
R + dT − T ∧ T = 0, (B)
R ∧ e ∧ e ∧ e = 0, (C)

dR +R ∧ T − T ∧R = 0. (D)

Proposition 5.8. The matrix treatment of the �rst of Cartan's structural equa-
tions (A) of the A4 geometry has the form

∇[ke
a
m] − eb

[kT
a
|b|m] = 0. (83)

Proof. Let us write equations (A) as

dea − ec ∧ T a
c = 0. (84)

Further, by (66), we have

dea = d(ea
mdx

m) = ∇ke
a
mdx

k ∧ dxm =
1

2
(∇ke

a
m −∇me

a
k)dx

k ∧ dxm

and, also,

eb ∧ T a
b = eb

kT
a
bmdx

k ∧ dxm =
1

2
(eb

kT
a
bm − eb

mT
a
bk)dx

k ∧ dxm.

Substituting these relationships into equations (84) we will derive the matrix equations
in the form

∇[ke
a
m] − eb

[kT
a
|b|m] = 0, (A)

where the matrixes ea
m and T a

bm in world indices i, j,m, . . . are transformed as vectors

ea
m′ =

∂xm

∂xm′ e
a
m, (85)

T a
bm′ =

∂xm

∂xm′ T
a
bm, (86)

and in the matrix indices a, b, c, . . . they are transformed as follows:

ea′

m = Λ a′

a ea
m, (87)

T a′

b′k = Λ a′

a T a
bkΛ

b
b′ + Λa′

aΛ
a
b′,k. (88)

In relationships (87) and (88) the matrices ∂xm′
/∂xm form a translation group T4 that

is de�ned on a manifold of world coordinates xi. On the other hand, the matrices Λa′
a

form a group of four-dimensional rotations O(3.1)

Λa′

a ∈ O(3.1),
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de�ned on the manifold of "angular coordinates" ea
i. Actually, the tetrad ea

i is a
mathematical image of an arbitrarily accelerated four-dimensional reference frame. Such
a frame has ten degrees of freedom: four translational ones connected with the motion
of its origin, and six angular ones describing variations of its orientation. The six inde-
pendent components of the tetrad ea

i represent six direction cosines of six independent
angles de�ning the orientation of the tetrad in space.

Proposition 5.9. The matrix rendering of the second of Cartan's structuring
equations (B) of the A4 geometry has the form

Ra
bkm + 2∇[kT

a
|b|m] + 2T a

c[kT
c
|b|m] = 0. (89)

Proof. We will expand the 2-form Ra
d as

Ra
b =

1

2
Ra

bcde
c ∧ ed =

1

2
Ra

bkmdx
k ∧ dxm. (90)

Further, we have

dT a
b = d(T a

bmdx
m) = ∇kT

a
bmdx

k ∧ dxm =
1

2
(∇kT

a
bm −∇mT

a
bk)dx

k ∧ dxm, (91)

and also

T a
c ∧ T c

b = T a
ckT

c
bmdx

k ∧ dxm =

=
1

2
(T a

ckT
c
bm − T c

bmT
a
ck)dx

k ∧ dxm. (92)

Let us substitute the relationships (92)�(94) into

Ra
b + dT a

b − T c
b ∧ T a

c = 0.

Simple transformations yield

1

2
(Ra

bkm +∇kT
a
bm −∇mT

a
bk + T a

ckT
c
bm − T c

bmT
a
ck)dx

k ∧ dxm = 0.

Since here the factor dxk ∧ dxm is arbitrary, we have

Ra
bkm +∇kT

a
bm −∇mT

a
bk + T a

ckT
c
bm − T c

bmT
a
ck = 0,

which is equivalent to the equations (89).

Proposition 5.10. The matrix form of the Bianchi identity (D) of A4 geometry
is

∇[nR
a
|b|km] +Rc

b[kmT
a
|c|n] − T c

b[nR
a
|c|km] = 0. (93)

Proof. The external di�erential dRa
b in the identities (D) has the 2-form

dRa
b =

1

2
∇nR

a
bkmdx

n ∧ dxk ∧ dxm =

=
1

6
(∇nR

a
bkm +∇mR

a
bkn +∇kR

a
bmn)dxn ∧ dxk ∧ dxm. (94)

12



In addition, we have

Rf
b ∧ T a

f =
1

2
Rf

bkmT
a
fndx

k ∧ dxm ∧ dxn =

=
1

6
(Rf

bkmT
a
fn +Rf

bnkT
a
fm +Rf

bmnT
a
fk)dx

k ∧ dxm ∧ dxn, (95)

T f
b ∧Ra

f =
1

2
T f

bnR
a
fkmdx

n ∧ dxk ∧ dxm =

=
1

6
(T f

bnR
a
fkm + T f

bmR
a
fnk + T f

bkR
a
fmn)dxn ∧ dxk ∧ dxm. (96)

Substituting relationships (94)�(96) into the identity

dRa
b +Rf

b ∧ T a
f − T f

b ∧Ra
f = 0

and considering that dxn ∧ dk ∧ dxm is arbitrary, we get

∇nR
a
bkm +∇mR

a
bkn +∇kR

a
bmn +Rf

bkmT
a
fn +Rf

bnkT
a
fm +

+Rf
bmnT

a
fk − T f

bnR
a
fkm − T f

bmR
a
fnk − T f

bkR
a
fmn = 0,

which is equivalent to the identity (93).
The �rst of Bianchi's identities (C) of A4 geometry in indices of the group O(3.1) is

written as
Ra

[bcd] = 0, (97)

or, which is the same, as
∗
∇[b Ω..a

cd] + 2Ω..f
[bcΩ

..a
d]f = 0. (98)

5 A4 geometry as a group manifold. Killing-Cartan

metric

The matrix representation of Cartan's structural equations of the geometry of abso-
lute parallelism indicates that, in fact, this space behaves as a manifold, on which the
translations group T4 and the rotations group O(3.1) are speci�ed. We will consider
A4 geometry as a group 10-dimensional manifold formed by four translational coordi-
nates xi (i = 0, 1, 2, 3) and six (by the relationship ea

ie
j
a = δi

j) angular coordinates ea
i

(a = 0, 1, 2, 3). Suppose that on this manifold a group of four-dimensional translations
T4 and a rotations group O(3.1) are de�ned. We then introduce the Hayashi invariant
derivative [4]

∇b = ek
b∂k, (99)

whose components are generators of the translations group T4 that is speci�ed on the
manifold of translational coordinates xi. If then we represent as a sum

ek
b = δk

b + ak
b, (100)

i, j, k . . . = 0, 1, 2, 3, a, b, c, . . . = 0, 1, 2, 3,

13



then the �eld ak
b can be viewed as the potential of the gauge �eld of the translations

group T4 [4]. In the case where ak
b = 0, the generators (99) coincide with the generators

of the translations group of the pseudo-Euclidean space E4 .
We know already that in the coordinate index k the nonholonomic tetrad ek

a trans-
forms as the vector

ek′

a =
∂xk′

∂xk
ek

a,

whence, by (100), we have the law of transformation for the �eld ak
a relative to the

translationss

ak′

b =
∂xk′

∂xn
an

b +
∂xk′

∂xn
δn

b − δk′

b. (101)

We de�ne the tetrad ei
a as

ei
a = ∇ax

i (102)

and write the commutational relationships for the generators (99) as

∇[a∇b] = −Ω..c
ab∇c, (103)

where −Ω..c
ab are the structural functions for the translations group of the spaceA4. If then

we apply the operator (103) to the manifold xi, we will arrive at the structural equations
of the group T4 of the space A4 as

∇[a∇b]x
i = −Ω..c

ab∇cx
i (104)

or
∇[ae

i
b] = −Ω..c

abe
i
c. (105)

In this relationship the structural functions −Ω..c
ab are de�ned as

−Ω..c
ab = ec

i∇[ae
i
b]. (106)

It is seen from this equality that when the potentials of the gauge �eld of translations
group ak

b in the relationship (100) vanish, so do the structural functions (106). Therefore,
we will refer to the �eld Ω..c

ab as the gauge �eld of the translations group.
Considering that T c

[ab] = −Ω..c
ab, we will rewrite the structural equations (106) as

∇[ke
a
m] − eb

[kT
a
|b|m] = 0. (107)

It is easily seen that the equations (107) can be derived by alternating the equa-
tions (42). What is more, they coincide with the structural Cartan equations (A) of the
geometry of absolute parallelism.

The structural equations of group T4, written as (106), can be regarded as a de�nition
for the torsion of space A4. So the torsion of space A4 coincides with the structural
function of the translations group of this space, such that the structural functions obey
the generalized Jacobi identity

∗
∇[b Ω..a

cd] + 2Ω..f
[bcΩ

..a
d]f = 0, (108)

where
∗
∇b is the covariant derivative with respect to the connection of absolute parallelism

∆a
bc. Comparing the identity (108) with the Bianchi identity (98) of the geometry A4, we

14



see that we deal with the same identity. The Jacobi identity (5.108), which is obeyed by
the structural functions of the translations group of geometry A4, coincides with the �rst
Bianchi identity of the geometry of absolute parallelism .

The vectors
ei

a = ∇ax
i, (109)

that form the vector strati�cation [3] of the A4 geometry, point along the tangents to each
point of the manifold xi of the pseudo-Euclidean plane with the metric tensor

ηab = ηab = diag(1, −1, −1, −1). (110)

Therefore, the ten-dimensional manifold (four translational coordinates xi and six
"rotational" coordinates ei

a) of the geometry of absolute parallelism can be regarded as
the strati�cation with the coordinates of the base xi and the (anholonomic) "coordinates"
of the �bre ei

c. If on the base xi we have the translations group T4, then in the �bre ei
c we

have the rotation group O(3.1). It follows from (109) that the in�nitesimal translations
in the base xi in the direction a are given by the vector

dsa = ea
idx

i. (111)

If from (111) and the covariant vector dsa = ei
adxi we form the invariant convolution

ds2, we will obtain the Riemannian metric of A4 space

ds2 = gikdx
idxk (112)

with the metric tensor
gik = ηabe

a
ie

b
k.

Therefore, the Riemannian metric (112) can be viewed as the metric de�ned on the
translations group T4.

Since in the �bre we have the "angular coordinates" ei
a that form a manifold in which

group O(3.1) is de�ned, then it would be natural to de�ne the structural equations for
this group, as well as the metric speci�ed on the group O(3.1).

Let us rewrite the relationships (38) and (39) in matrix form

T a
bk = ea

iT
i
jke

j
b = ∇ke

a
je

j
b, (113)

T a
bk = ea

iT
i
jke

j
b = −ea

i∇ke
i
b. (114)

These relationships enable the dependence between the in�nitesimal rotation dχab =
−dχba of the vector ea

i at in�nitesimal translations dsa to be established. In fact, by (113)
and (114), we have

dχa
b = T a

bkdx
k = Dea

je
j
b, (115)

dχa
b = T a

bkdx
k = −ea

iDe
i
b. (116)

where D is the absolute di�erential [1] with respect to the Christo�el symbols Γi
jk. Using

(115), we can form the invariant quadratic form dτ 2 = dχa
bdχ

b
a to arrive at the Killing-

Cartan metric
dτ 2 = dχa

bdχ
b
a = T a

bkT
b
andx

kdxn = −Dea
iDe

i
a (117)
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with the metric tensor
Hkn = T a

bkT
b
an. (118)

Unlike metric (112), the metric (117) is speci�ed on the rotations group O(3.1) that
acts on the manifold of the "rotational coordinates" ea

i.
Let us now introduce the covariant derivative

∗
∇m= ∇m + Tm, (119)

where Tm is the matrix T a
bm with discarded matrix indices. We will regard the components

of the derivative as generators of the rotations group O(3.1). Applying this operator to
the tetrad ei that forms the manifold of "angular coordinates" of the A4 geometry, we
will arrive at ∗

∇m ei = ∇me
i + Tme

i = 0, (120)

hence
Tm = −ei∇me

i. (121)

It is interesting to note that, just as in (109) we have de�ned six "angular coordinates"
ei

a through the four translational coordinates xi, so in (5.121) we can de�ne 24 "super-
coordinates" T a

bm through the six coordinates ei
a.

It follows from (120) that
∇me

i = −Tme
i. (122)

Recall that in the relationships (120)-(122) we have de�ned through ∇m the covariant
derivative with respect to Γi

jk. We will now take the covariant derivative ∇k of the
relationships (122)

∇k∇me
i = −∇k(Tme

i) = −(∇kTme
i + Tm∇ke

i) =

= −(∇kTme
i + Tme

iei∇ke
i).

Using (121), we will rewrite this expression as follows

∇k∇me
i = −(∇kTm − TmTk)e

i.

Alternating this expression in the indices k and m gives

∇[k∇m]e
i =

1

2
Rkme

i, (123)

where
Rkm = 2∇[mTk] + [Tm, Tk]. (124)

Introducing in equations (124) the matrix indices (the �bre indices), we will obtain
the structural equation of the group O(3.1)

Ra
bkm = 2∇[mT

a
|b|k] + 2T a

c[mT
c
|b|k]. (B)

It is easily seen that the structural equations of the rotations group (B) coincide with the
second of Cartan's structural equations (124) of the geometry A4.
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In this case the quantities T a
bk and Ra

bkm vary in the rotations group O(3.1) following
the law

T a′

b′k = Λ a′

a T a
bkΛ

b
b′ + Λ a′

a Λa
b′,k, (125)

and appear as the potentials of the gauge �eld Ra
bkm of the rotations group O(3.1). In

the process, the gauge �eld of the group O(3.1) obeys the formula

Ra′

b′km = Λ a′

a Ra
bkmΛb

b′ . (126)

Note that the structural functions of the rotations group of A4 geometry are the
components of the curvature tensor Ra

bkm. It can be shown that the structural functions
Ra

bkm of the rotations group O(3.1) satisfy the Jacobi identity

∇[nR
a
|b|km] +Rc

b[kmT
a
|c|n] − T c

b[nR
a
|c|km] = 0, (D)

which, at it was shown in the previous section, are at the same time the second Bianchi
identities of the A4 space.

Let us introduce the dual Riemann tensor

∗
Rijkm=

1

2
εsp

kmRijsp, (127)

where εsp
km is the completely skew-symmetrical Levi-Chivita tensor. Then the equations

(D) can be written as

∇n

∗
R

a
b
kn+

∗
R

c
b
knT a

cn − T c
bn

∗
R

a
c
kn = 0 (128)

or, if we drop the matrix indices, as

∇n

∗
R

kn+
∗
R

knTn − Tn

∗
R

kn = 0. (129)

6 Structural equations of A4 geometry in the form of

expanded, completely geometrized

Einstein-Yang-Mills set of equations

Einstein believed that one of the main problems of the uni�ed �eld theory was the
geometrization of the energy-momentum tensor of matter on the right-hand side of his
equations. This problem can be solved if we use as the space of events the geometry of
absolute parallelism and the structural Cartan equations for this geometry.

In fact, folding the equations (B), written as

Ri
jkm + 2∇[kT

i
|j|m] + 2T i

s[kT
s
|j|m] = 0 (130)

in indices i and k, gives
Rjm = −2∇[iT

i
|j|m] − 2T i

s[iT
s
|j|m]. (131)

If then we fold the equations (131) with the metric tensor gjm, we have

R = −2gjm(∇[iT
i
|j|m] + 2T i

s[iT
s
|j|m]). (132)
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Forming, using (131) and (132), the Einstein tensor

Gjm = Rjm − 1

2
gjmR,

we obtain the equations

Rjm − 1

2
gjmR = νTjm, (133)

which are similar to Einstein's equations, but with the geometrized right-hand side de�ned
as

Tjm = −2

ν
{(∇[iT

i
|j|m] + T i

s[iT
s
|j|m])−

−1

2
gjmg

pn(∇[iT
i
|p|n] + T i

s[iT
s
|p|n])} (134)

Using the notation
Pjm = (∇[iT

i
|j|m] + T i

s[iT
s
|j|m])

then, by (134), we have

Tjm = −2

ν
(Pjm − 1

2
gjmg

pnPpn). (135)

Tensor (135) has parts that are both symmetrical and skew-symmetrical in indices j
and m, i.e.,

Tjm = T(jm) + T[jm]. (136)

The left-hand side of the equations (133) is always symmetrical in indices j and m,
therefore these equations can be written as

Rjm − 1

2
gjmR = νT(jm), (137)

T[jm] =
1

ν
(−∇iΩ

..i
jm −∇mAj − AsΩ

..s
jm) = 0, (138)

where
Aj = T i

ji. (139)

Relationship (138) can be taken to be the equations obeyed by the torsion �elds Ω..i
jm,

which form the energy-momentum tensor (135).
In the case where the �eld T i

jk is skew-symmetrical in all the three indices, we get

Tijk = −Tjik = Tjki = −Ωijk. (140)

For such �elds the equations (138) become simple, namely

∇iΩ
..i
jm = 0. (141)

The energy-momentum tensor (135) is symmetrical in indices j,m and appears to be
given by

Tjm =
1

ν
(Ω..i

smΩ..s
ji −

1

2
gjmΩ.ji

s Ω..s
ji ). (142)
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By (137), we have

Tjm =
1

ν
(Rjm − 1

2
gjmR). (143)

Using (131), (140) and (142) gives

Rjm = Ω..i
smΩ..s

ji , (144)

R = gjmΩ..i
smΩ..s

ji = Ω.ji
s Ω..s

ji . (145)

Substituting (144) and (145) into (143), we arrive at the energy-momentum tensor
(142).

Through the �eld (140) we can de�ne the pseudo-vector hm as follows

Ωijk = εijkmhm, Ωijk = εijkmh
m, (146)

where εijkm is the fully skew-symmetrical Levi-Chivita symbol.
In terms of the pseudo-vector hm we can write the tensor (142) as follows

Tjm =
1

ν
(hjhm − 1

2
gjmh

ihi). (147)

Substituting the relationships (146) into (141), we get

hm,j − hj,m = 0. (148)

These equations have two solutions: the trivial one, where hm = 0, and

hm = ψ,m, (149)

where Ψ is a pseudo-scalar.
Writing the energy-momentum tensor (148) in terms of this pseudo-scalar, we will

have

Tjm =
1

ν
(ψ,jψ,m − 1

2
gjmψ

,iψ,i). (150)

Tensor (150) is the energy-momentum tensor of a pseudo-scalar �eld.
Let us now decompose the Riemann tensor Rijkm into irreducible parts

Rijkm = Cijkm + gi[kRm]j + gj[kRm]i +
1

3
Rgi[mgk]j, (151)

where Cijkm is the Weyl tensor; the second and third terms are the traceless part of the
Ricci tensor Rjm and R is its trace.

Using the equations (133), written as

Rjm = ν
(
Tjm − 1

2
gjmT

)
, (152)

we will rewrite the relationship (151) as

Rijkm = Cijkm + 2νg[k(iTj)m] −
1

3
νTgi[mgk]j, (153)
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where T is the tensor trace (135).
Now we introduce the tensor current

Jijkm = 2g[k(iTj)m] −
1

3
Tgi[mgk]j (154)

and represent the tensor (153) as the sum

Rijkm = Cijkm + νJijkm. (155)

Substituting this relationship into the equations (130), we will arrive at

Cijkm + 2∇[kT|ij|m] + 2Tis[kT
s
|j|m] = −νJijkm. (156)

Equations (156) are the Yang-Mills equations with a geometrized source, which is
de�ned by the relationship (154). In equations (156) for the Yang-Mills �eld we have
the Weyl tensor Cijkm, and the potentials of the Yang-Mills �eld are the Ricci rotation
coe�cients T i

jk.
We now substitute the relationship (155) into the second Bianchi identities (D)

∇[nR|ij|km] +Rs
j[kmT|is|n] − T s

j[nR|is|km] = 0. (157)

We thus arrive at the equations of motion

∇[nC|ij|km] + Cs
j[kmT|is|n] − T s

j[nC|is|km] = −νJnijkm (158)

for the Yang-Mills �eld Cijkm, such that the source Jnijkm in them is given in terms of the
current (154) as follows:

Jnijkm = ∇[nJ|ij|km] + Js
j[kmT|is|n] − T s

j[nR|is|km]. (159)

Using the geometrized Einstein equations (133) and the Yang-Mills equations (156),
we can represent the structural Cartan equations (A) and (B) as an extended set of
Einstein-Yang-Mills equations

∇[ke
a
j] + T i

[kj]e
a
i = 0, (A)

Rjm − 1
2
gjmR = νTjm, (B.1)

Ci
jkm + 2∇[kT

i
|j|m] + 2T i

s[kT
s
|j|m] = −νJ i

jkm, (B.2)

(160)

in which the geometrized sources Tjm and Jijkm are given by (135) and (154).
For the case of Einstein's vacuum the equations (160) are much simpler

∇[ke
a
j] + T i

[kj]e
a
i = 0, (i)

Rjm = 0, (ii)
Ci

jkm + 2∇[kT
i
|j|m] + 2T i

s[kT
s
|j|m] = 0. (iii)

(161)

The equations of motion (158) for the Yang-Mills �eld Cijkm will then become

∇[nC|ij|km] + Cs
j[kmT|is|n] − T s

j[nC|is|km] = 0. (162)
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Equations (A) and (B.2) can be written in matrix form

∇[ke
a
m] − eb

[kT
a
|b|m] = 0, (A)

Ca
bkm + 2∇[kT

a
|b|m] + 2T a

f [kT
f
|b|m] = −νJa

bkm, (B.2)

where the current

Ja
bkm = 2g[k

(aTb)m] −
1

3
Tga

[mgk]b, (163)

is given by

T a
m =

1

ν
(Ra

m − 1

2
ga

mR), (B.1)

m = 0, 1, 2, 3, a = 0, 1, 2, 3.

By writing the equations (158) in matrix form, we have

∇[nC
a
|b|km] + Cc

b[kmT
a
|c|n] − T c

b[nC
a
|a|km] = −νJa

nbkm, (164)

where
Ja

nbkm = ∇[nJ
a
|b|km] + J c

b[kmT
a
|c|n] − T c

b[nJ
a
|c|km]. (165)

Dropping the matrix indices in the matrix equations, we have

∇[kem] − e[kTm] = 0, (A)

Ckm + 2∇[kTm] − [Tk, Tm] = −νJkm, (B.2)

∇n

∗
C

kn + [
∗
C

kn, Tn] = −ν
∗
J

k, (D)

where the dual matrices
∗
C kn and

∗
J k are given by

∗
C

kn = εknijCij,
∗
J

nk = εnkimJim, (166)
∗
J

k = {∇n

∗
J

kn + [
∗
J

kn, Tn]}. (167)
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