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1 Object of anholonomicity -Ricci torsion. Connection
of absolute parallelism

Consider a four-dimensional differentiable manifold with coordinates z* (i = 0,1, 2, 3)
such that at each point of the manifold we have a vector e?; (i = 0,1,2,3) and a covector
e’, (b=0,1,2,3) with the normalization conditions

a_ j __ £J a i __ sa
e%el, =0;, ehely, =0y. (1)

For arbitrary coordinate transformations

-/

. 07!
dz" = da® 2
Oxk )
in coordinate index ¢ the tetrad e? transforms as a vector
or
€a,L'/ = @eai. (3)

In the process, in the tetrad index a relative to the transformations (2) it behaves as
a scalar.
Tetrad e”; defines the metric tensor of a space of absolute parallelism

Gite = Nae”s€fy Ny = 0™ = diag(l —1 —1 —1) (4)
and the Riemannian metric 4
ds® = ggdx'da®, (5)
Using the tensor (4) and the normal rule, we can construct the Christoffel symbols
Uik = 59" (Gimk + G = Gitm)- (6)

that transform following a nontensor law of transformation [1]
Ok Oz N ox' 027 9z _, )
Ox?0xd" Ox*  Ox? 0w Oak !

with respect to the coordinate transformations (2). In the relationship (6) and farther on
we will denote the partial derivative with respect to the coordinates z* as

0

k/
Fj/,i/ -

K (8)
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Differentiating the arbitrary vector e?; gives

J
ety =0 (9)

Wi = P’
Applying the differentiation operation (9) to the relationship (3) gives

oz O’ 0?2’
6?/ g = 74,7.,6(2 + ﬁeau (10)
’ oxV Ox" "~ OJx¥Oxd "
Alternating the indices i and j’ and subtracting from (10) the resultant expression,
we have : :
i Oy
s—eh = (e —e" ) 8:154 8&
J° 12¥) IV 9t O’

Considering (3), we can rewrite this relationship in the form

a
€irg

¥ (e, —e, ) =eF (e — e )%%%
i, J'i a\® ij 3 9t Ol Ok
By definition, the differential
ds® = e, dx" (11)

is said to be complete, if the following relationship holds:

eai,j - eaj,i - 0. (12)

Otherwise, for %, ; —e?;; # 0, the differential (11) is not integrable (equality (12) is
the condition of integration for the relationship (11)).
We will introduce the following geometric object [2]
) i _a 1 % a a
ij =€ uClk,4 = 56 HE kj — € j,k) (13)

with a tensor law of transformation relative to the coordinate transformations (2)

, ,
P Ox? 9z* O’
L — LT~ o, o~ 1.7 L.
7k Ik Q" Ok’ Ot

Clearly, if the condition (12) is met, this object vanishes. In that case, tetrad e? is
holonomic and the metric (5) characterizes holonomic differential geometry. If the object
(13) is nonzero, we deal with anholonomic differential geometry, and the object (13) itself
is called an object of anholonomicity.

We will rewrite the relationship (10) in the following manner:

(14)

P %’ . dox' O’ o
i’ Oz oxd’ ' Ot Qxd' B

0% xk oxt Ox?

- -/ -/ + -y -/ Af eaku (]‘5)

Oz 0z ox? Oxi" Y
where we have introduced the notation
k k

A = e e (16)
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and used the orthogonality condition (1).
It is seen from the relationships (15 ) that the object AJ; gets transformed relative to
the transformations (2) as the connection

AW Ok Oz 83: Ox? Oz

p— - - 1
T 0¥ 0xd" Ox* 81” Ox?" Ok (17)

The connection of a space given by (16) is called the connection of absolute parallelism

13]-

Interchanging in (17) the indices i and j gives

O2xk oz 9zt 97 Oz

T Qa0 Oxk * 7" Ox Ox* (18)
Subtracting (18) from (17) gives
oz 0x7 Oz*
A1 = g 907 B0 (19

It follows from the relationships (16) and (13) that the connection of absolute paral-
lelism features the Ricci torsion
Al = - (20)

17

defined by the object of anholonomity.
2 Covariant differentiation in A4 geometry. Ricci rota-
tion coefficients

The definition of the covariant derivative with respect to the connection of the geometry
of absolute parallelism (A, geometry) A%, from a tensor of arbitrary valence U, ?, has
the form

%k Uib = e ALULP +ot AL U, —
A Ulmp — = ALUT

This definition enables some quite useful relationships in A4 geometry to be proved.

(21)

Proposition 5.1. Parallel displacement of the tetrad e% relative to the connection
Al equals zero identically.
Proof. From the definition (21) we have the following equalities:

Vi ey = al,, + Algel,, (22)

Vk; eaj == eaj,k - A;keai. (23)

Since the connection A, is defined as

T 1
Ay =e

3 a
a® jk>

we have
1
e’ €% Ajk =



Multiplying this equality by e? and taking into consideration the orthogonality con-
ditions (5.1), we get
Vi et = e, — Ae® = 0. (25)
To prove that the relationship (22) is zero, we will take a derivative of the convolution
€0 =9 | | | |
(5;);C = (e?e;)yk =e' % tete,, =0.
Hence, by (24), we have
A;k = —e“jeiavk (26)
or
e“LjeiaJLC + A;k = 0.

Multiplying this relationship by ¢/, and using the conditions e*;¢e’, = ¢}, we have
Vi e, =eh,+ AL, =0 (27)
Proposition 5.2. Connection A%, can be represented as the sum
Ajy =Ty + Ty, (28)
where I'}, are the Christoffel symbols given by the relationship (6), and
Tjik = _Qj’ii + 9" (9550 + IrsS ) (29)

are the Ricci rotation coefficients [2].
Proof. Let us represent the connection (28) as the sum of parts symmetrical and skew-
symmetrical in indices j, k
Aj = Ay + B (30)
where
1

b = 5Bk T Bk)s Al = 5 (A% = Aj)-

We now add to and subtract from the right-hand side of (30) the same expression

Af = Ay + Al + 9 (955 A + Gs Afjmy) =

m S S 31
g (ngA[km] + gksA[jm])' (31
We then group the terms on the right-hand side of (31) as follows:
Afy = Ay = 97 (955D + grs D) +
+ Al + 97955 Ak + IrsAfjmy)- (32)
Since ' 4
W =~k
it follows from (32) and (29) that
A§-k = Aéjk:) - gim(gjsA[skm] + gksAfjm]) + T;k (33)
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We now show that
F;‘k = Aéjk) - gim(gjsAfkm] + GrsAfjm)- (34)

Actually, we have the relationships

Aéjk) = eiae?j,k:) = §€ia(€aj,k + %)
7 T a 1 7 a a
Al = € iy = 5¢ o€k — €% ),
Jjs = Nave®;€’s, (35)

therefore (34) become

Dy = €aclipy + 07 (Db py + Tabieln ) =

1 .
_ cd i m/. b a b ¢
= 577 Nab€eCy (€, ik T Eme k,j) +
1 .
im a b a _b a_b a b
+§9 (nab(e i€ mk — € ,4€ k,m) + Nav (e m,j — €k€ j,m)> .

Regrouping the terms here gives

) 1 im a a a
= 50" (10es€ )+ (Maieh) s — (Mt s€")m)

Hence, by (35), we obtain

it = 59" (G + G = Gjkam). (36)
or
1 im
59" Gimk + Ghm,j = Gikm) =

Substituting (37) into (33), we get the relationship (28).

Proposition 5.3. The Ricci rotation coefficients TJ’,c can be represented in the
form
1—;}]{: - €Zavk6aj, (38)
Th, = —e"Vie',, (39)
where V, stands for a covariant derivative with respect to the Christoffel I, symbols.

Proof. We will represent in the relationships (25) and (27) the connection A}, as the
sum (28)

Vie'; =€ — F;keai - T;ke“i =0, (40)

Vi e =€+ e, +The, =0 (41)



Since, by definition [1], we can write

a _ _a R p R
Ve, = e — e,

Vie', = e, + ey,

then (40) and (41) can be written as

Vie'y +Thel, = 0. (43)

Multiplying (42) by ¢’, and (43) by e, respectively, we will obtain (using the ortho-
gonality conditions (1)), by (42), (43), the relationships (38) and (39).

We will now calculate the covariant derivative V, with respect to the metric tensor

¢’™, knowing that ¢/™ = n%el_e™

%k gjm :%k n“bejae}? :%k €ja6ma =
— ™y, el +el, Vi €M
From the relationships (25) and (27), we have
Vg =0. (44)
On the other hand, applying the formula (21) to the relationship (44), we find that
%k ¢m = gj,gm + A;kgpm + Ag}ggjp = 0. (45)

Substituting the connection A}, as the sum (28), we will write the relationship (45)
in the form . A _ A

Vi 9" = Vg™ + T 9" + T1ig’" = 0. (46)

From the equality ‘ ' ' '
Vig™ = g + g™ + Tjig™ =0, (47)

we have, by (46), . ‘ , )

Thg"" + Tong’” = T)" + T,V = 0.

This equality establishes the following symmetry properties for the Ricci rotation coeffi-

clents:

Therefore, in the A4 geometry the Ricci rotation coefficients have 24 independent compo-
nents.



3 Curvature tensor of A, space

The curvature tensor of the space of absolute parallelism S*;;, is defined in terms of
the connection A%, following a conventional rule [18]

J

where the parentheses | | signify alternation in appropriate indices, whereas the index
within the vertical lines | | is not subject to alternation.

Proposition 5.4. The Riemann-Christoffel tensor of a space with the connection
(26) equals zero identically.
Proof. From the relationship (26) we have

J 2

Differentiating the relationship (50) with respect to m gives

a _ i a 7 a 7
j,k,m - (Ajke i)7 - A]k m6 + € ﬂLAjk -
% i o_a s a % % s a
(Ajkm +e aes,mAjk)e (A]k m + AsmAjk) IS

Alternating this relationship in indices £ and m we get
—2e 3, lkym] = 2(Az + 2As[k ‘]‘m}) = Sljkmea,i. (51)

Since the operation of differentiating with respect to indices k and m is symmetrical,
we have
€ km) =0,
From this equality, considering that e in (51) is arbitrary, we will get
S’ m = 0. (52)

Jjkm

Proposition 5.5. Tensor 5, can be represented as the sum

where
R i = 2T + 205 (54)
is the tensor of the Riemannian space Ay.
Proof. Substituting the sum A}, =T, + T} into (49) gives
S st = 2L ) + QFe[kaj\m} + QT?[ w2 [kTmm} +
Using (54), we will write (55) as follows:
Sljkm — szkm —+ 2T Flm.k] + 27" [kf,rmm] +
+2050. Ty + 20Ty = O (56)
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If now we add to the right-hand side of this relationship the expression
and take into consideration that [1]
ViUt = Uy + TRULD 4+ F?kU“j -
DL ULT — DU, (57)

we will obtain from (56) the equality (53).
Let us now rewrite the relationship (53) as

R jm = = 2T gy = 2T 55 T - (58)
Substituting here (38) and (39)
T;k = eiavke“j, T;k = —eajvkeia,
we obtain . .
2Tz[m K = —2e’ V[kvm]e“- -2V ke@V
—2T" [kﬂ]\m} = 2¢° V[ke|a a|V = 2V[k€|a‘vm]€
Therefore, it follows from the relationships (58) that
R = —2€' Vi Ve, = 2¢' Vi Vige?;. (59)

Proposition 5.6. The torsion field ;{ of the A4 space satisfies the equations

Vi Qi + 20550, = 0. (60)

Proof. Alternating the expression (49) in indices j, k, m and using the relationship Afjk] =
—;, we get |

If then we add and subtract here the quantlty

280 ) + 28m

il

we will have

205,

QA[kJQ\ m) — 280, +
20 + 200 s = 0.

Jm]

Using the formula (21), we can rewrite this relationship as follows:

=2V Q5 +4Q[kJQ g = o,

m|s

whence we have (60).



Proposition 5.7. The Riemann tensor R, of the A, space satisfies the equality
Rt = 0. (63)
Proof. Alternating the relationship (54) in indices j, k, m and using the equality
Ty =~
we have ' ' ‘
Ry = 2Vt + 2T Q0.

If in the right-hand side of the equality we add and subtract the quantity

213, + 2T

jlso

we obtain

Rijem) = 2V 680 + 2T 5880 — 2T m) —

= 20059

Im]

F 205825 & 2T Y = 2 Vi
=205, 25 = 2 Vi Qi + 4945500, = 0,

mls —

which proves the validity of the relationship (63).

4 Formalism of external forms and the matrix
treatment of Cartan’s structural equations of the
absolute parallelism geometry

Consider the differentials

da' = ee’,, (64)
de', = A%e’,, (65)
where ‘
" = elda’, (66)
A% = e%de’y = A%, da* (67)

are differential 1-forms of tetrad e? and connection of absolute parallelism A%, . Differ-
entiating the relationships (64), (65) externally [3], we have, respectively,

d(dz?) = (de® — e“ A A% )e!, = — 5% (68)

d(de’,) = (dA°, — A, AN AP ey = —SP el (69)

Here S denotes the 2-form of the Cartan torsion [3], and S°, — the 2-form of the
curvature tensor. The sign A signifies external product, e.g,

e N el = e — ebet. (70)



By definition, a space has a geometry of absolute parallelism, if the 2-form of Cartanian
torsion S¢ and the 2-form of the Riemann-Christoffel curvature S°, of this space vanishe

5% =0, (71)

SP o =0. (72)

At the same time, these equalities are the integration conditions for the differentials
(64) and (65).
Equations
de” — e NAY, = =59, (73)

dA®, — A°, ANAY, = —S° (74)

a

which follow from (68) and (69), are Cartan’s structural equations for an appropriate
geometry. For the geometry of absolute parallelism hold the conditions (71) and (72),
therefore Cartan’s structural equations for A4 geometry have the form

de® — e NA?, =0, (75)

dA’, — A°, ANAY, = 0. (76)

Considering (28), we will represent 1-form A% as the sum
A% =T +T9. (77)
Substituting this relationship into (75) and noting that
e NAY =e"NT",
we get the first of Cartan’s structural equations for A, space.
de® — e NT = 0. (A)
Substituting (77) into (76) gives the second of Cartan’s equations for A4 space.
R +dT® — TS AT =0, (B)
where R% is the 2-form of the Riemann tensor
R%, = dI'%, — T, AT, (78)

By definition [3], we always have the relationships

dd(dz") = 0, (79)
dd(de',) = 0. (80)
In the geometry of absolute parallelism these equalities become
d(de® — e NT%) = R ;ye° Ned Ne? =0, (81)
d(R% + dT% — TS AT®) = dR* + R\, NT% — T A R = 0. (82)
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Here
a o a a b
Rpg = =21 a5y = 2T 1" )

Equalities (81) and (82) represent the first and second of Bianchi’s identities, respec-
tively, for A4 space. Dropping the indices, we can write Cartan’s structural equations and
Bianchi’s identities for the A4 geometry as

de—eNT =0, (A)
R+dT —TAT=0, (B)
RAeNeNe=0, (C)
dR+RAT—TAR=0. (D)

Proposition 5.8. The matrix treatment of the first of Cartan’s structural equa-
tions (A) of the A, geometry has the form

Ve — €T ym = 0. (83)
Proof. Let us write equations (A) as
de® — e NT = 0. (84)
Further, by (66), we have
de” = d(e”,,dx™) = Ve, da™ A da™ = ;(Vke“m — Ve )da® A da™
and, also,
e NTG = e’ T4 da® Ada™ = ;(eka‘;)m —eb 1% Vda* A da™.

Substituting these relationships into equations (84) we will derive the matrix equations
in the form

Vire = €@ T hm = 0, (A)
where the matrixes e, and 79, in world indices ¢, j,m, ... are transformed as vectors
oz™
4 r = 7 “ 5 85
e = e, (55)
oz™
TS = 71T % 86
bm orm bm ( )
and in the matrix indices a, b, ¢, ... they are transformed as follows:
v =AN"e (87)
Gr = NS TGN + A% Y ke (88)

In relationships (87) and (88) the matrices dz™ /0z™ form a translation group T} that
is defined on a manifold of world coordinates #°. On the other hand, the matrices A%,
form a group of four-dimensional rotations O(3.1)

AY € 0(3.1),
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defined on the manifold of "angular coordinates" e® ;. Actually, the tetrad e® ; is a
mathematical image of an arbitrarily accelerated four-dimensional reference frame. Such
a frame has ten degrees of freedom: four translational ones connected with the motion
of its origin, and six angular ones describing variations of its orientation. The six inde-
pendent components of the tetrad e® ; represent six direction cosines of six independent
angles defining the orientation of the tetrad in space.

Proposition 5.9. The matrix rendering of the second of Cartan’s structuring
equations (B) of the A; geometry has the form

Ry + 2V Ty + 2T 3T ) = 0 (89)
Proof. We will expand the 2-form R%; as
1
Further, we have

dT% = d(T%, dx™) = V, 7%, dz* A da™ =
1
5 (ViT % = V. T%,)dz" A da™, (91)

and also

T ANTG =T,T6, do* A de™ =
1

Let us substitute the relationships (92)—(94) into
o 4 dT% — TS AT = 0.
Simple transformations yield

1 _ _
§(R“bkm + VT8 — V1%, +T°,7T7, — T T%)dz" A da™ = 0.

Since here the factor dz* A dx™ is arbitrary, we have

Ry + VT — Vi Ty + T3 T % — T T = 0,

C

which is equivalent to the equations (89).

Proposition 5.10. The matrix form of the Bianchi identity (D) of A4 geometry
is
ViR em) + Boopem T ey — T o epom) = 0- (93)
Proof. The external differential dR%, in the identities (D) has the 2-form

1
dRab = §vnRabkmd.Tn VAN dIk Adx™ =
1
= S (VaR o + Vi Ry + ViR )da™ A da® A da™. (94)
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In addition, we have
1
RI AT, = inbkaafndxk Adz™ A da" =

1
— 6( Ry T + R 1% + R T )da™ A da™ A da™, (95)

1
Th AR = in;n *emdz" A dat A da™ =
1 f a f a f a n k m
Substituting relationships (94)—(96) into the identity
AR, + R\, AT —T{, ANR", =0
and considering that dz"™ A d* A da™ is arbitrary, we get

v'fl‘ll:iablwn + vaabkn + v’f‘Rabmn + bekaafn + Rflkaa m +
+Rf Tafk - TJ;m afkm - TJ;)m afnk - TJ;kRa mn O’

bmn
which is equivalent to the identity (93).
The first of Bianchi’s identities (C') of A4 geometry in indices of the group O(3.1) is
written as

Ra[bcd] — O, (97)
or, which is the same, as
Vi Qi + 27 = 0. (98)

5 A4 geometry as a group manifold. Killing-Cartan
metric

The matrix representation of Cartan’s structural equations of the geometry of abso-
lute parallelism indicates that, in fact, this space behaves as a manifold, on which the
translations group T and the rotations group O(3.1) are specified. We will consider
Ay geometry as a group 10-dimensional manifold formed by four translational coordi-
nates z; (i = 0,1,2,3) and six (by the relationship e%e’, = §;7) angular coordinates e
(a = 0,1,2,3). Suppose that on this manifold a group of four-dimensional translations
T, and a rotations group O(3.1) are defined. We then introduce the Hayashi invariant
derivative [4]

Vb = ekbak, (99)

whose components are generators of the translations group 7 that is specified on the
manifold of translational coordinates x;. If then we represent as a sum

b, = 6% + af,, (100)

i k...=01,2,3, abe,...=01,2,3,
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then the field a¥, can be viewed as the potential of the gauge field of the translations
group T} [4]. In the case where a¥ = 0, the generators (99) coincide with the generators
of the translations group of the pseudo-Euclidean space E; .
We know already that in the coordinate index k the nonholonomic tetrad e, trans-

forms as the vector )

Ko % o

@ Qzk Y
whence, by (100), we have the law of transformation for the field a*, relative to the

translationss y y
0z oz /
k n n k
a®, = a + o — 0%, 101
L L VO b (101)

We define the tetrad €', as ‘ _
S v (102)

and write the commutational relationships for the generators (99) as
ViV = =45V, (103)

where —€.7 are the structural functions for the translations group of the spaceA,. If then
we apply the operator (103) to the manifold x?, we will arrive at the structural equations
of the group T} of the space A, as

V[avb]l’i = —Q'C;g CZL‘i (104)
or ‘ '
Viee'yy = —Qpe’ . (105)

In this relationship the structural functions —€;;; are defined as
— Q5 = € Viae'y. (106)

It is seen from this equality that when the potentials of the gauge field of translations
group af in the relationship (100) vanish, so do the structural functions (106). Therefore,
we will refer to the field €27 as the gauge field of the translations group.

Cousidering that T, = —(2;5, we will rewrite the structural equations (106) as

V[keam} — eb[k‘Ta|b|m] =0. (107)

It is easily seen that the equations (107) can be derived by alternating the equa-
tions (42). What is more, they coincide with the structural Cartan equations (A) of the
geometry of absolute parallelism.

The structural equations of group T}, written as (106), can be regarded as a definition
for the torsion of space As. So the torsion of space A, coincides with the structural
function of the translations group of this space, such that the structural functions obey
the generalized Jacobi identity

Vi Qi + 205197 = 0, (108)

where %b is the covariant derivative with respect to the connection of absolute parallelism
Af.. Comparing the identity (108) with the Bianchi identity (98) of the geometry Ay, we
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see that we deal with the same identity. The Jacobi identity (5.108), which is obeyed by
the structural functions of the translations group of geometry Ay, coincides with the first
Bianchi identity of the geometry of absolute parallelism .

The vectors
e, = V' (109)

a

that form the vector stratification [3] of the A, geometry, point along the tangents to each
point of the manifold z? of the pseudo-Euclidean plane with the metric tensor

Nay = % = diag(1, -1, —1, —1). (110)

Therefore, the ten-dimensional manifold (four translational coordinates x' and six
"rotational" coordinates €’,) of the geometry of absolute parallelism can be regarded as
the stratification with the coordinates of the base z* and the (anholonomic) "coordinates"
of the fibre €. If on the base 2* we have the translations group 7T}, then in the fibre ¢’ we
have the rotation group O(3.1). It follows from (109) that the infinitesimal translations
in the base ' in the direction a are given by the vector

ds® = e*dz’. (111)

If from (111) and the covariant vector ds, = €', dz; we form the invariant convolution
ds?, we will obtain the Riemannian metric of A4 space

ds? = gpda'da® (112)

with the metric tensor
9it = Tave”;€".

Therefore, the Riemannian metric (112) can be viewed as the metric defined on the
translations group 7Tj.

Since in the fibre we have the "angular coordinates" e’ that form a manifold in which
group O(3.1) is defined, then it would be natural to define the structural equations for
this group, as well as the metric specified on the group O(3.1).

Let us rewrite the relationships (38) and (39) in matrix form

7% = T, = Vie'se, (113)

= eaiTijkejb = e Vi, (114)

These relationships enable the dependence between the infinitesimal rotation dy., =
—dxpa Of the vector e% at infinitesimal translations ds, to be established. In fact, by (113)
and (114), we have

dy", = T da® = De%;e’,, (115)

dy, = T4 dx* = —e® Dé', . 116
b bk ey

where D is the absolute differential [1] with respect to the Christoffel symbols I';,.. Using
(115), we can form the invariant quadratic form dr? = dx%dx®’, to arrive at the Killing-

Cartan metric .
dr? = dx"dx’, = T%,T",, dx"dx™ = —De® Dé’, (117)
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with the metric tensor
Hyp = T4, T . (118)

Unlike metric (112), the metric (117) is specified on the rotations group O(3.1) that
acts on the manifold of the "rotational coordinates" e®;.
Let us now introduce the covariant derivative

V= Vi + T, (119)

where T}, is the matrix 79, with discarded matrix indices. We will regard the components
of the derivative as generators of the rotations group O(3.1). Applying this operator to
the tetrad e’ that forms the manifold of "angular coordinates" of the A, geometry, we
will arrive at .

Vi €' = Ve +The =0, (120)

hence .
T,, = —e;V e’ (121)

It is interesting to note that, just as in (109) we have defined six "angular coordinates"
e', through the four translational coordinates z’, so in (5.121) we can define 24 "super-
coordinates" T = through the six coordinates ¢’,.
It follows from (120) that
Ve = —Tpe'. (122)

Recall that in the relationships (120)-(122) we have defined through V,, the covariant
derivative with respect to I'y;. We will now take the covariant derivative V), of the
relationships (122)

ViVne' = —Vi(Te') = —(ViTme' + T,,Vie') =
= —(ViTme' + Trhe'e;Vie').

Using (121), we will rewrite this expression as follows
ViVie' = —(ViTy — T Te)e'.

Alternating this expression in the indices k and m gives
i1 i
V[;Nm]e = §kae , (123)

where
Ry, = QV[mTk} + [Tm, Tk]. (124)

Introducing in equations (124) the matrix indices (the fibre indices), we will obtain
the structural equation of the group O(3.1)

Ryem = 2V Ty + 2750, T oy (B)

It is easily seen that the structural equations of the rotations group (B) coincide with the
second of Cartan’s structural equations (124) of the geometry A,.
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In this case the quantities 7%, and R%,,, vary in the rotations group O(3.1) following
the law

Tai)//k = Aaa/Tai)kAbb/ + Aaa/Aa /,k)7 (125)
and appear as the potentials of the gauge field R%,,, of the rotations group O(3.1). In
the process, the gauge field of the group O(3.1) obeys the formula

Ral;’km = Aaa, abkmAbb/' (126)

Note that the structural functions of the rotations group of A geometry are the
components of the curvature tensor R%,,,. It can be shown that the structural functions
R%,.,., of the rotations group O(3.1) satisfy the Jacobi identity

ViR pjim) + Eoopm T en) = T B o) = 0, (D)

which, at it was shown in the previous section, are at the same time the second Bianchi
identities of the A, space.
Let us introduce the dual Riemann tensor

* 1 s
Rijkm= 55 P m Rijsps (127)

where ¢, is the completely skew-symmetrical Levi-Chivita tensor. Then the equations
(D) can be written as

v R a k’n+ ;% cbknTacn o Tclm ]*% ackn =0 (128)
or, if we drop the matrix indices, as

V. R+ R, — T, R*" =0. (129)

6 Structural equations of A; geometry in the form of
expanded, completely geometrized
Einstein-Yang-Mills set of equations

Einstein believed that one of the main problems of the unified field theory was the
geometrization of the energy-momentum tensor of matter on the right-hand side of his
equations. This problem can be solved if we use as the space of events the geometry of
absolute parallelism and the structural Cartan equations for this geometry.

In fact, folding the equations (B), written as

R o + 2V 3Ty + 2T Ty = 0 (130)

Jjkm jlm] —

in indices i and k, gives

Rjp = =2V T, — 2T T (131)

\J\m jlm]

If then we fold the equations (131) with the metric tensor /™, we have
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Forming, using (131) and (132), the Einstein tensor

1
Gjm - ij - §gij>

we obtain the equations
1

ij — ig]mR = l/ij, (133)
which are similar to Einstein’s equations, but with the geometrized right-hand side defined
as

2

Tjm = _;{WwTﬂﬂm] + T T ) —

1 n 7 % s
_igjmgp (VT ) + T s T )} (134)
Using the notation ‘ A
Pjm = (VET" ) + T Ty
then, by (134), we have

2 1 .
Tjm = _;(‘Djm - igjmgp Ppn>~ (135)

Tensor (135) has parts that are both symmetrical and skew-symmetrical in indices j
and m, i.e.,
Tjm = Tijm) + Tijm)- (136)
The left-hand side of the equations (133) is always symmetrical in indices j and m,
therefore these equations can be written as

1
ij - §gij = VT(jm)a (137)
1 )
T[jm} = ;(_szjin - VmAJ - ASQ];’L) = O> (138)
where _
Ay =T, (139)

Relationship (138) can be taken to be the equations obeyed by the torsion fields Qj‘}in,
which form the energy-momentum tensor (135).
In the case where the field Tj’k is skew-symmetrical in all the three indices, we get

Tijr = —Tjix = Tjr = —iji- (140)
For such fields the equations (138) become simple, namely
Vi = 0. (141)
The energy-momentum tensor (135) is symmetrical in indices j, m and appears to be
given by
1 . 1 g
T = L (00,95 = La0i0p). (142
v

sm* g1 2
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By (137), we have
1 1

Tjm = - (Bjm = 59imB)- (143)

Using (131), (140) and (142) gives
Rjm = Q50,57 (144)
R =g Q2 = QIQ57. (145)

Substituting (144) and (145) into (143), we arrive at the energy-momentum tensor
(142).
Through the field (140) we can define the pseudo-vector h,, as follows
Qijk = Eijkmhm, Qijk: = Eijkmhm, (146)

where €;j1, is the fully skew-symmetrical Levi-Chivita symbol.
In terms of the pseudo-vector h,, we can write the tensor (142) as follows

Ty = i(hjhm — ;gjmh"hi). (147)
Substituting the relationships (146) into (141), we get
P j — hjm = 0. (148)
These equations have two solutions: the trivial one, where h,, = 0, and

hm = Y,m, (149)

where U is a pseudo-scalar.
Writing the energy-momentum tensor (148) in terms of this pseudo-scalar, we will
have

1 1,
T‘jm = ;(w,qubmz - 59jm¢7 w,z) (150)

Tensor (150) is the energy-momentum tensor of a pseudo-scalar field.
Let us now decompose the Riemann tensor R;ji,, into irreducible parts

1
Rijem = Cijem + gippBn)j + gjieLom)i + gRgi[mgk]p (151)
where Cjin, is the Weyl tensor; the second and third terms are the traceless part of the

Ricci tensor Rj,, and R is its trace.
Using the equations (133), written as

1
we will rewrite the relationship (151) as

1
Rijim = Cijem + 20 Ljym) — gVTgi[mgk]j7 (153)
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where T is the tensor trace (135).
Now we introduce the tensor current

1
Jijkm = 29 Tjym) — ngi[mgk]j (154)

and represent the tensor (153) as the sum
Rijkm = Cijkm + Vijkm. (155)
Substituting this relationship into the equations (130), we will arrive at

Cl]km + 2v[kT‘z]\m + 27—‘23[k7—“ = _VJijkm' (156)

jlm]

Equations (156) are the Yang-Mills equations with a geometrized source, which is
defined by the relationship (154). In equations (156) for the Yang-Mills field we have
the Weyl tensor Cjjin,, and the potentials of the Yang-Mills field are the Ricci rotation
coefficients T7;.

We now substitute the relationship (155) into the second Bianchi identities (D)

We thus arrive at the equations of motion
ViuClijiwm) + ClpmLiisin) — Tt Clisikm) = —VJnijkm (158)

for the Yang-Mills field Cjj.m,, such that the source Jp;jpm in them is given in terms of the
current (154) as follows:

Jnijem = Vindjijiem] + Jjpm Disin] = Tjn Lislom] - (159)

Using the geometrized Einstein equations (133) and the Yang-Mills equations (156),
we can represent the structural Cartan equations (A) and (B) as an extended set of
Einstein-Yang-Mills equations

V[ke‘?] + T[z}fj]e“i = O, (A)
R]m — %QJmR = Uy, (B.1) (160)
Cltm + 2V Ty + 2T 5 Ty = =¥ s (B-2)

in which the geometrized sources T}, and J;j, are given by (135) and (154).
For the case of Einstein’s vacuum the equations (160) are much simpler

V[k;e?] 4+ jj[irj}eai = 0, (Z)
Rjm =0, (i) (161)
C jom + 2V + 215,15 = 0 (i)

The equations of motion (158) for the Yang-Mills field Cjjy,, will then become

VinClijikm) + Clpom Lisin) —

J

J["
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Equations (A) and (B.2) can be written in matrix form

Vi€’ m) = € 4T = 0, (4)
Com + 2V TNy + 2T Ty = =V i (B.2)
where the current
Tt = 2906 “ Toym) — ;Tga[mgk]b, (163)
is given by
7o — Lpe _ Lo gy (B.1)

meooyr ™m0
m=01,23 a=0123

By writing the equations (158) in matrix form, we have

V[”Ca\b\km] + ch[/cmTa|c|n} o ch[nca\a%m} = _V‘]anbkrm (164)
where
anbk:m = v[n‘]a|b|/<:m} + Jcb[kaa|c|n] - ch[n‘]a|c\k:m]' (165)

Dropping the matrix indices in the matrix equations, we have

Vikem) — epTm =0, (A)
Cim + 2V Ty — [T, Tr] = —vJim, (B.2)
Vné’kn‘l’[c*’knaTn]:_ija (D)

where the dual matrices 5’ kn and j k are given by

C*f kn _ Ekm‘jc«ij’
jnk — Enkim(]im7 (166)
TE = AV, JE 4 [T T (167)
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